2227213
Project Grant
Overview
Grant Description
Sttr Phase I: Space Debris Awareness Spectrum - The broader impact/commercial potential of this Small Business Technology Transfer (STTR) Phase I project will develop methods for space-based detection of orbital debris. This technology may decrease risks of collisions in space through real-time, accurate identification and modeling of objects within the respective orbits of the spacecraft. The system will also assist with potential path deviations.
With the proposed space-based debris awareness technology, techniques could be employed to prevent future collisions and debris damage. A function of such a system could be for designating objects or debris that require emergency orbital removal due to the threats they pose to critical equipment. Additionally, the proposed systems can be used to detect and avoid kinetic attacks as well as the debris fields generated by them. Further, the proposed onboard sensors may detect a broad range of object characteristics, including size, velocity, composition, origin, and intent. Moreover, the solution will assist in intelligence gathering and identifying parties responsible for collisions.
The proposed solution addresses the above-stated concerns by integrating orbital debris awareness platforms on host space vehicles to serve as watchdogs for the geostationary and surrounding orbital altitudes. This STTR Phase I project proposes to investigate optimal methods for onboard satellite sensor systems to obtain full spherical space awareness for the host satellites, and thereby allow for better predictive and reactive collision avoidance of hostile threats and orbital debris. This technology could advance novel and transformative solutions for eliminating the threat of satellite collisions with orbital debris and enhance space awareness. The technology will improve space operation risk management margins and permit the space industry's safe growth.
The proposed work will include research in three (3) key areas:
1) Characterizing the debris environment with regard to detection and tracking in the microwave and optical spectrums using the aggregation of data from sensors currently in orbit;
2) Identifying and prescribing optimal detection/tracking methods and technologies within the microwave spectrum to permit sensing of sub-centimeter-sized objects; and
3) Pinpointing detection/tracking methods and technologies within the optical spectrum to allow sensing of sub-10 cm sized objects.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. Subawards are planned for this award.
With the proposed space-based debris awareness technology, techniques could be employed to prevent future collisions and debris damage. A function of such a system could be for designating objects or debris that require emergency orbital removal due to the threats they pose to critical equipment. Additionally, the proposed systems can be used to detect and avoid kinetic attacks as well as the debris fields generated by them. Further, the proposed onboard sensors may detect a broad range of object characteristics, including size, velocity, composition, origin, and intent. Moreover, the solution will assist in intelligence gathering and identifying parties responsible for collisions.
The proposed solution addresses the above-stated concerns by integrating orbital debris awareness platforms on host space vehicles to serve as watchdogs for the geostationary and surrounding orbital altitudes. This STTR Phase I project proposes to investigate optimal methods for onboard satellite sensor systems to obtain full spherical space awareness for the host satellites, and thereby allow for better predictive and reactive collision avoidance of hostile threats and orbital debris. This technology could advance novel and transformative solutions for eliminating the threat of satellite collisions with orbital debris and enhance space awareness. The technology will improve space operation risk management margins and permit the space industry's safe growth.
The proposed work will include research in three (3) key areas:
1) Characterizing the debris environment with regard to detection and tracking in the microwave and optical spectrums using the aggregation of data from sensors currently in orbit;
2) Identifying and prescribing optimal detection/tracking methods and technologies within the microwave spectrum to permit sensing of sub-centimeter-sized objects; and
3) Pinpointing detection/tracking methods and technologies within the optical spectrum to allow sensing of sub-10 cm sized objects.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. Subawards are planned for this award.
Awardee
Funding Goals
THE GOAL OF THIS FUNDING OPPORTUNITY, "NSF SMALL BUSINESS INNOVATION RESEARCH (SBIR)/ SMALL BUSINESS TECHNOLOGY TRANSFER (STTR) PROGRAMS PHASE I", IS IDENTIFIED IN THE LINK: HTTPS://WWW.NSF.GOV/PUBLICATIONS/PUB_SUMM.JSP?ODS_KEY=NSF22551
Grant Program (CFDA)
Awarding / Funding Agency
Place of Performance
Bethany Beach,
Delaware
19930-8018
United States
Geographic Scope
Single Zip Code
Related Opportunity
22-551
Guardiansat was awarded
Project Grant 2227213
worth $273,332
from National Science Foundation in September 2023 with work to be completed primarily in Bethany Beach Delaware United States.
The grant
has a duration of 1 year and
was awarded through assistance program 47.084 NSF Technology, Innovation, and Partnerships.
SBIR Details
Research Type
STTR Phase I
Title
STTR Phase I:Space Debris Awareness Spectrum
Abstract
The broader impact/commercial potential of this Small Business Technology Transfer (STTR) Phase I project will develop methods for space-based detection of orbital debris. This technology may decrease risks of collisions in space through real-time, accurate identification and modeling of objects within the respective orbits of the spacecraft. The system will also assist with potential path deviations. With the proposed space-based debris awareness technology, techniques could be employed to prevent future collisions and debris damage. A function of such a system could be for designating objects or debris that require emergency orbital removal due to the threats they pose to critical equipment. Additionally, the proposed systems can be used to detect and avoid kinetic attacks as well as the debris fields generated by them. Further, the proposed onboard sensors may detect a broad range of object characteristics, including size, velocity, composition, origin, and intent. Moreover, the solution will assist in intelligence gathering and identifying parties responsible for collisions. The proposed solution addresses the above-stated concerns by integrating orbital debris awareness platforms on host space vehicles to serve as watchdogs for the geostationary and surrounding orbital altitudes._x000D_ _x000D_ This STTR Phase I project proposes to investigate optimal methods for onboard satellite sensor systems to obtain full spherical space awareness for the host satellites, and thereby allow for better predictive and reactive collision avoidance of hostile threats and orbital debris. This technology could advance novel and transformative solutions for eliminating the threat of satellite collisions with orbital debris and enhance space awareness. The technology will improve space operation risk management margins and permit the space industry's safe growth. The proposed work will include research in three (3) key areas: 1) characterizing the debris environment with regard to detection and tracking in the microwave and optical spectrums using the aggregation of data from sensors currently in orbit; 2) identifying and prescribing optimal detection/tracking methods and technologies within the microwave spectrum to permit sensing of sub-centimeter-sized objects; and 3) pinpointing detection/tracking methods and technologies within the optical spectrum to allow sensing of sub-10 cm sized objects._x000D_ _x000D_ This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Topic Code
SP
Solicitation Number
NSF 22-551
Status
(Complete)
Last Modified 9/22/23
Period of Performance
9/15/23
Start Date
8/31/24
End Date
Funding Split
$273.3K
Federal Obligation
$0.0
Non-Federal Obligation
$273.3K
Total Obligated
Activity Timeline
Additional Detail
Award ID FAIN
2227213
SAI Number
None
Award ID URI
SAI EXEMPT
Awardee Classifications
Small Business
Awarding Office
491503 TRANSLATIONAL IMPACTS
Funding Office
491503 TRANSLATIONAL IMPACTS
Awardee UEI
W4RZFNC1EN66
Awardee CAGE
8MP88
Performance District
DE-00
Senators
Thomas Carper
Christopher Coons
Christopher Coons
Budget Funding
Federal Account | Budget Subfunction | Object Class | Total | Percentage |
---|---|---|---|---|
Research and Related Activities, National Science Foundation (049-0100) | General science and basic research | Grants, subsidies, and contributions (41.0) | $273,332 | 100% |
Modified: 9/22/23