Search Prime Grants

2226026

Cooperative Agreement

Overview

Grant Description
Sbir Phase II: Zero Trust Solution for Precision Medicine and Precision Health Data Exchanges -This Small Business Innovation Research (SBIR) Phase II project leverages novel converging technologies and expands blockchain technology to new healthcare domains enabling the secure exchange of confidential, precision health information such as advanced directives and life-sustaining management within and between organizations.

The confidentiality, security, and efficiency of data management are critically important in advanced care and life-sustaining treatment decision pathways for ethical, clinical, regulatory, and legal reasons. The combination of the proprietary blockchain solution with artificial intelligence (AI) capabilities and edge computing enablement offers enhanced privacy and security, improved audit-readiness, better risk management, and superior operational efficiency.

The solution functions as an overlay to legacy systems. It easily integrates with existing information management systems, in the cloud or on premise. Further, this solution is scalable, providing a competitive advantage and ease of adoption for stakeholders, including those who are seeking Web 3.0 upward compatibility.

In addition to the direct impact within this application area, the technology can have a broader positive influence on the economy and society by preventing or reducing data breaches, increasing trust and quality of life, and reducing the total cost of healthcare. This SBIR Phase II project establishes a novel, efficient, and effective solution for advanced directives and life-sustaining management, which is one of the critical areas within precision health and medicine given the highly personalized and ethically-complex nature of the application.

The zero-trust solution achieves decentralized confidentiality, fine-grained access control, and robust intrusion tolerance by avoiding any single point of failure and maintaining operational efficiency. By leveraging modern cryptographic protocols, pre-built privacy-preserving smart contracts, advanced user access control overlays, support for publish/subscribe messaging patterns, integration with off-chain operations, and confidentiality-preserving machine learning models, the solution offers a unique, modular, decentralized architecture that can meet complex regulatory, privacy and security requirements.

Further, the technology is specifically designed to address Internet of Things (IoT) network security and data management at scale. The project aims to reduce cyber-vulnerability, increase operational flexibility and achieve scalability that will prove beneficial to a broad array of related healthcare and precision medicine domains such as transplant services, genomic medicine, or biobanks where data confidentiality is of critical importance, especially as these are highly vulnerable to data breaches and cyberattacks.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. - Subawards are not planned for this award.
Awardee
Funding Goals
THE GOAL OF THIS FUNDING OPPORTUNITY, "NSF SMALL BUSINESS INNOVATION RESEARCH PHASE II (SBIR)/ SMALL BUSINESS TECHNOLOGY TRANSFER (STTR) PROGRAMS PHASE II", IS IDENTIFIED IN THE LINK: HTTPS://WWW.NSF.GOV/PUBLICATIONS/PUB_SUMM.JSP?ODS_KEY=NSF22552
Awarding / Funding Agency
Place of Performance
Catonsville, Maryland 21228-4851 United States
Geographic Scope
Single Zip Code
Related Opportunity
22-552
Softhread was awarded Cooperative Agreement 2226026 worth $984,905 from National Science Foundation in April 2024 with work to be completed primarily in Catonsville Maryland United States. The grant has a duration of 2 years and was awarded through assistance program 47.084 NSF Technology, Innovation, and Partnerships.

SBIR Details

Research Type
SBIR Phase II
Title
SBIR Phase II: Zero Trust Solution for Precision Medicine and Precision Health Data Exchanges
Abstract
This Small Business Innovation Research (SBIR) Phase II project leverages novel converging technologies and expands blockchain technology to new healthcare domains enabling the secure exchange of confidential, precision health information such as advanced directives and life-sustaining management within and between organizations. The confidentiality, security, and efficiency of data management are critically important in advanced care and life-sustaining treatment decision pathways for ethical, clinical, regulatory, and legal reasons. The combination of the proprietary blockchain solution with artificial intelligence (AI) capabilities and edge computing enablement offers enhanced privacy and security, improved audit-readiness, better risk management, and superior operational efficiency. The solution functions as an overlay to legacy systems. It easily integrates with existing information management systems, in the cloud or on premise. Further, this solution is scalable, providing a competitive advantage and ease of adoption for stakeholders, including those who are seeking Web 3.0 upward compatibility. In addition to the direct impact within this application area, the technology can have a broader positive influence on the economy and society by preventing or reducing data breaches, increasing trust and quality of life, and reducing the total cost of healthcare. This SBIR Phase II project establishes a novel, efficient, and effective solution for advanced directives and life-sustaining management, which is one of the critical areas within precision health and medicine given the highly personalized and ethically-complex nature of the application. The zero-trust solution achieves decentralized confidentiality, fine-grained access control, and robust intrusion tolerance by avoiding any single point of failure and maintaining operational efficiency. By leveraging modern cryptographic protocols, pre-built privacy-preserving smart contracts, advanced user access control overlays, support for publish/subscribe messaging patterns, integration with off-chain operations, and confidentiality-preserving machine learning models, the solution offers a unique, modular, decentralized architecture that can meet complex regulatory, privacy and security requirements. Further, the technology is specifically designed to address Internet of Things (IoT) network security and data management at scale. The project aims to reduce cyber-vulnerability, increase operational flexibility and achieve scalability that will prove beneficial to a broad array of related healthcare and precision medicine domains such as transplant services, genomic medicine, or biobanks where data confidentiality is of critical importance, especially as these are highly vulnerable to data breaches and cyberattacks. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Topic Code
DL
Solicitation Number
NSF 22-552

Status
(Ongoing)

Last Modified 3/21/24

Period of Performance
4/1/24
Start Date
3/31/26
End Date
70.0% Complete

Funding Split
$984.9K
Federal Obligation
$0.0
Non-Federal Obligation
$984.9K
Total Obligated
100.0% Federal Funding
0.0% Non-Federal Funding

Activity Timeline

Interactive chart of timeline of amendments to 2226026

Additional Detail

Award ID FAIN
2226026
SAI Number
None
Award ID URI
SAI EXEMPT
Awardee Classifications
Small Business
Awarding Office
491503 TRANSLATIONAL IMPACTS
Funding Office
491503 TRANSLATIONAL IMPACTS
Awardee UEI
P4MHVSNWGAW5
Awardee CAGE
8GN90
Performance District
MD-07
Senators
Benjamin Cardin
Chris Van Hollen
Modified: 3/21/24