2213169
Cooperative Agreement
Overview
Grant Description
SBIR Phase II: A beat-to-beat blood pressure monitor using micro-nanoscale wrinkled functional materials - The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase II project is focused on providing real-time and continuous monitoring of blood pressure for patients in surgery and critical care.
Currently, only 10-15% of patients undergoing surgery receive continuous blood pressure monitoring because such monitoring requires specialized skill to administer the invasive procedure and can also introduce potential complications. The remaining patients are monitored intermittently with a non-invasive blood pressure cuff, resulting in gaps in information between readings and potentially delayed response times.
Rapid blood pressure drops are associated with poor patient outcomes such as organ damage/failure, post-surgical complications, and death. The success of this project has the potential to not only increase the number of surgical and critical care patients who receive continuous monitoring, improving quality of care and patient outcomes, but also to enable continuous blood pressure monitoring in other applications, such as in pre-eclampsia patients in obstetrics.
This project also has commercial potential. With over 50 million surgeries performed in the US each year, the serviceable, addressable market is $2.5 billion per year. Expanded to the global market where over 230 million surgeries are performed annually, the total addressable market is over $11 billion.
This Small Business Innovation Research (SBIR) Phase II project develops a wireless, continuous, and non-invasive blood pressure monitoring device that can capture rapid fluctuations in blood pressure with high temporal resolution. Current technologies developed to address the unmet need for non-invasive, continuous blood pressure monitoring have been limited in their accuracy, cost, and ease-of-use.
The research objectives to advance this project to commercial and clinical readiness are: device optimization through sensor improvement and algorithm development, form factor development for mechanical and electrical stability, and development of a smart calibration system for improved usability. Through iterative device design and testing in clinical environments, this project aims to tackle the long-standing challenges of continuous blood pressure monitoring, namely motion, calibration, and signal drift.
The Phase II project outcome is a wearable, non-invasive, and continuous blood pressure monitoring device to be used in the operating room and intensive care unit. This device has the potential to not only empower clinicians with greater insight into patient condition, enabling rapid response and improved care in the clinical setting, but it can also be used to improve understanding of disease progression, treatment effectiveness, and patient stratification across demographics.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Currently, only 10-15% of patients undergoing surgery receive continuous blood pressure monitoring because such monitoring requires specialized skill to administer the invasive procedure and can also introduce potential complications. The remaining patients are monitored intermittently with a non-invasive blood pressure cuff, resulting in gaps in information between readings and potentially delayed response times.
Rapid blood pressure drops are associated with poor patient outcomes such as organ damage/failure, post-surgical complications, and death. The success of this project has the potential to not only increase the number of surgical and critical care patients who receive continuous monitoring, improving quality of care and patient outcomes, but also to enable continuous blood pressure monitoring in other applications, such as in pre-eclampsia patients in obstetrics.
This project also has commercial potential. With over 50 million surgeries performed in the US each year, the serviceable, addressable market is $2.5 billion per year. Expanded to the global market where over 230 million surgeries are performed annually, the total addressable market is over $11 billion.
This Small Business Innovation Research (SBIR) Phase II project develops a wireless, continuous, and non-invasive blood pressure monitoring device that can capture rapid fluctuations in blood pressure with high temporal resolution. Current technologies developed to address the unmet need for non-invasive, continuous blood pressure monitoring have been limited in their accuracy, cost, and ease-of-use.
The research objectives to advance this project to commercial and clinical readiness are: device optimization through sensor improvement and algorithm development, form factor development for mechanical and electrical stability, and development of a smart calibration system for improved usability. Through iterative device design and testing in clinical environments, this project aims to tackle the long-standing challenges of continuous blood pressure monitoring, namely motion, calibration, and signal drift.
The Phase II project outcome is a wearable, non-invasive, and continuous blood pressure monitoring device to be used in the operating room and intensive care unit. This device has the potential to not only empower clinicians with greater insight into patient condition, enabling rapid response and improved care in the clinical setting, but it can also be used to improve understanding of disease progression, treatment effectiveness, and patient stratification across demographics.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Awardee
Grant Program (CFDA)
Awarding / Funding Agency
Place of Performance
Irvine,
California
92617-3231
United States
Geographic Scope
Single Zip Code
Related Opportunity
None
Analysis Notes
Amendment Since initial award the total obligations have decreased 50% from $2,000,000 to $1,000,000.
Vena Vitals was awarded
Cooperative Agreement 2213169
worth $1,000,000
from National Science Foundation in March 2023 with work to be completed primarily in Irvine California United States.
The grant
has a duration of 2 years and
was awarded through assistance program 47.084 NSF Technology, Innovation, and Partnerships.
SBIR Details
Research Type
SBIR Phase II
Title
SBIR Phase II:A Beat-to-Beat Blood Pressure Monitor Using Micro-Nanoscale Wrinkled Functional Materials
Abstract
The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase II project is focused on providing real-time and continuous monitoring of blood pressure for patients in surgery and critical care. Currently, only 10-15% of patients undergoing surgery receive continuous blood pressure monitoring because such monitoring requires specialized skill to administer the invasive procedure and can also introduce potential complications. The remaining patients are monitored intermittently with a non-invasive blood pressure cuff, resulting in gaps in information between readings and potentially delayed response times. Rapid blood pressure drops are associated with poor patient outcomes such as organ damage/failure, post-surgical complications, and death. The success of this project has the potential to not only increase the number of surgical and critical care patients who receive continuous monitoring, improving quality of care and patient outcomes, but also to enable continuous blood pressure monitoring in other applications, such as in pre-eclampsia patients in obstetrics. This project also has commercial potential. With over 50 million surgeries performed in the US each year, the serviceable, addressable market is $2.5 billion per year. Expanded to the global market where over 230 million surgeries are performed annually, the total addressable market is over $11 billion._x000D_ _x000D_ This Small Business Innovation Research (SBIR) Phase II project develops a wireless, continuous, and non-invasive blood pressure monitoring device that can capture rapid fluctuations in blood pressure with high temporal resolution. Current technologies developed to address the unmet need for non-invasive, continuous blood pressure monitoring have been limited in their accuracy, cost, and ease-of-use. The research objectives to advance this project to commercial and clinical readiness are: device optimization through sensor improvement and algorithm development, form factor development for mechanical and electrical stability, and development of a smart calibration system for improved usability. Through iterative device design and testing in clinical environments, this project aims to tackle the long-standing challenges of continuous blood pressure monitoring, namely motion, calibration, and signal drift. The Phase II project outcome is a wearable, non-invasive, and continuous blood pressure monitoring device to be used in the operating room and intensive care unit. This device has the potential to not only empower clinicians with greater insight into patient condition, enabling rapid response and improved care in the clinical setting, but it can also be used to improve understanding of disease progression, treatment effectiveness, and patient stratification across demographics._x000D_ _x000D_ This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Topic Code
BM
Solicitation Number
NSF 21-565
Status
(Complete)
Last Modified 3/21/23
Period of Performance
3/15/23
Start Date
2/28/25
End Date
Funding Split
$1.0M
Federal Obligation
$0.0
Non-Federal Obligation
$1.0M
Total Obligated
Activity Timeline
Additional Detail
Award ID FAIN
2213169
SAI Number
None
Award ID URI
SAI EXEMPT
Awardee Classifications
Small Business
Awarding Office
491503 TRANSLATIONAL IMPACTS
Funding Office
491503 TRANSLATIONAL IMPACTS
Awardee UEI
EHSLFPGBL8K5
Awardee CAGE
8FM54
Performance District
Not Applicable
Budget Funding
Federal Account | Budget Subfunction | Object Class | Total | Percentage |
---|---|---|---|---|
Research and Related Activities, National Science Foundation (049-0100) | General science and basic research | Grants, subsidies, and contributions (41.0) | $1,000,000 | 100% |
Modified: 3/21/23