2200163
Cooperative Agreement
Overview
Grant Description
Sbir Phase II: A Blockchain Ecosystem for Encrypting Real World Data and Developing Artificial Intelligence to Optimize Pharmacy Prior Authorization -The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase II project is to significantly reduce administrative inefficiency in pharmaceutical benefit management processing. The specific focus is on prior authorization processing, where payers and prescribers must reach a consensus on medical necessity.
The project delivers a solution to optimize prescription authorization and provide more comprehensive patient histories for clinical authorization criteria fulfillment than other available products on the current health technology market. Lack of efficient access to reliable patient histories is the principal reason for delayed authorizations, resulting in delayed care access.
A 2022 survey showed 93% of physicians reported that prior authorization often or always creates care delays; 82% reported delays that led to treatment abandonment. A secure yet progressively decentralized patient data transfer protocol would heighten transparency of clinical decision-making processes and also increase opportunities for patient engagement during prior authorization of medical prescriptions.
Further, since administrative costs increase the cost of benefits, which in turn increases the cost of care access, the potential commercial impact is that payers who lower administrative costs will be better positioned to offer higher reimbursement rates for a greater range of quality treatment options, at increasingly lower cost.
This SBIR Phase II project proposes to deliver a distributed ledger with smart contracts specific to the domain of pharmaceutical benefits. Since the cause of processing inefficiency lies with siloed and incomplete patient histories, this protocol resolves administrative inefficiencies through distributed ledger technology supporting fast and compliant encrypted health data sharing among prescribers, payers, and patients.
Research objectives include: 1) automating criteria fulfillment to reduce administrative waste; 2) leveraging machine learning to automate simpler case reviews; and 3) designing a shared interorganizational processing protocol capable of adapting to an introduction of revised clinical standards.
Smart contracts will be deployed to a distributed ledger infrastructure to formalize and enforce clinical standards as well as contractually specified financial rules and actuarial analyses at an interorganizational level. With smart contracts embedded in the authorization process to automatically curate more robust clinical histories over each prescription lifecycle, available real world data meeting contractually specified quality standards for clinical review will increase.
Historical authorization data will feed back into incrementally complex cases, advancing artificial intelligence for authorization decision support. The expected result is improved real-time insight into clinical risk, affording payers the ability to financially and strategically adapt to patient needs with increasing precision and agility.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The project delivers a solution to optimize prescription authorization and provide more comprehensive patient histories for clinical authorization criteria fulfillment than other available products on the current health technology market. Lack of efficient access to reliable patient histories is the principal reason for delayed authorizations, resulting in delayed care access.
A 2022 survey showed 93% of physicians reported that prior authorization often or always creates care delays; 82% reported delays that led to treatment abandonment. A secure yet progressively decentralized patient data transfer protocol would heighten transparency of clinical decision-making processes and also increase opportunities for patient engagement during prior authorization of medical prescriptions.
Further, since administrative costs increase the cost of benefits, which in turn increases the cost of care access, the potential commercial impact is that payers who lower administrative costs will be better positioned to offer higher reimbursement rates for a greater range of quality treatment options, at increasingly lower cost.
This SBIR Phase II project proposes to deliver a distributed ledger with smart contracts specific to the domain of pharmaceutical benefits. Since the cause of processing inefficiency lies with siloed and incomplete patient histories, this protocol resolves administrative inefficiencies through distributed ledger technology supporting fast and compliant encrypted health data sharing among prescribers, payers, and patients.
Research objectives include: 1) automating criteria fulfillment to reduce administrative waste; 2) leveraging machine learning to automate simpler case reviews; and 3) designing a shared interorganizational processing protocol capable of adapting to an introduction of revised clinical standards.
Smart contracts will be deployed to a distributed ledger infrastructure to formalize and enforce clinical standards as well as contractually specified financial rules and actuarial analyses at an interorganizational level. With smart contracts embedded in the authorization process to automatically curate more robust clinical histories over each prescription lifecycle, available real world data meeting contractually specified quality standards for clinical review will increase.
Historical authorization data will feed back into incrementally complex cases, advancing artificial intelligence for authorization decision support. The expected result is improved real-time insight into clinical risk, affording payers the ability to financially and strategically adapt to patient needs with increasing precision and agility.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Awardee
Grant Program (CFDA)
Awarding / Funding Agency
Place of Performance
Washington,
District Of Columbia
20009-4808
United States
Geographic Scope
Single Zip Code
Related Opportunity
None
RED Oak Strategic was awarded
Cooperative Agreement 2200163
worth $1,000,000
from National Science Foundation in May 2023 with work to be completed primarily in Washington District Of Columbia United States.
The grant
has a duration of 2 years and
was awarded through assistance program 47.084 NSF Technology, Innovation, and Partnerships.
SBIR Details
Research Type
SBIR Phase II
Title
SBIR Phase II: A Blockchain Ecosystem for Encrypting Real World Data and Developing Artificial Intelligence to Optimize Pharmacy Prior Authorization
Abstract
The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase II project is to significantly reduce administrative inefficiency in pharmaceutical benefit management processing. The specific focus is on prior authorization processing, where payers and prescribers must reach a consensus on medical necessity. The project delivers a solution to optimize prescription authorization and provide more comprehensive patient histories for clinical authorization criteria fulfillment than other available products on the current health technology market. Lack of efficient access to reliable patient histories is the principal reason for delayed authorizations, resulting in delayed care access. A 2022 survey showed 93% of physicians reported that prior authorization often or always creates care delays; 82% reported delays that led to treatment abandonment. A secure yet progressively decentralized patient data transfer protocol would heighten transparency of clinical decision-making processes and also increase opportunities for patient engagement during prior authorization of medical prescriptions. Further, since administrative costs increase the cost of benefits, which in turn increases the cost of care access, the potential commercial impact is that payers who lower administrative costs will be better positioned to offer higher reimbursement rates for a greater range of quality treatment options, at increasingly lower cost._x000D_ _x000D_ This SBIR Phase II project proposes to deliver a distributed ledger with smart contracts specific to the domain of pharmaceutical benefits. Since the cause of processing inefficiency lies with siloed and incomplete patient histories, this protocol resolves administrative inefficiencies through distributed ledger technology supporting fast and compliant encrypted health data sharing among prescribers, payers, and patients. Research objectives include: 1) automating criteria fulfillment to reduce administrative waste; 2) leveraging machine learning to automate simpler case reviews; and 3) designing a shared interorganizational processing protocol capable of adapting to an introduction of revised clinical standards. Smart contracts will be deployed to a distributed ledger infrastructure to formalize and enforce clinical standards as well as contractually specified financial rules and actuarial analyses at an interorganizational level. With smart contracts embedded in the authorization process to automatically curate more robust clinical histories over each prescription lifecycle, available real world data meeting contractually specified quality standards for clinical review will increase. Historical authorization data will feed back into incrementally complex cases, advancing artificial intelligence for authorization decision support. The expected result is improved real-time insight into clinical risk, affording payers the ability to financially and strategically adapt to patient needs with increasing precision and agility._x000D_ _x000D_ This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Topic Code
DL
Solicitation Number
NSF 21-565
Status
(Complete)
Last Modified 5/4/23
Period of Performance
5/1/23
Start Date
4/30/25
End Date
Funding Split
$1.0M
Federal Obligation
$0.0
Non-Federal Obligation
$1.0M
Total Obligated
Activity Timeline
Additional Detail
Award ID FAIN
2200163
SAI Number
None
Award ID URI
SAI EXEMPT
Awardee Classifications
Small Business
Awarding Office
491503 TRANSLATIONAL IMPACTS
Funding Office
491503 TRANSLATIONAL IMPACTS
Awardee UEI
FGDLTXZ49DC3
Awardee CAGE
7QMS3
Performance District
98
Budget Funding
Federal Account | Budget Subfunction | Object Class | Total | Percentage |
---|---|---|---|---|
Research and Related Activities, National Science Foundation (049-0100) | General science and basic research | Grants, subsidies, and contributions (41.0) | $1,000,000 | 100% |
Modified: 5/4/23