Search Prime Grants

2153880

Project Grant

Overview

Grant Description
Sbir Phase I: A compact, 3-level, high efficiency, 4-port, modular universal power conversion system with Internet of Things (IoT) using wide bandgap (WBG) devices - The broader impact/commercial potential of this Small Business Innovation Research (SBIR) project focuses on developing a universal power conversion system that addresses the unmet needs of the fast-growing electrification and energy storage industries whether it is related to electric vehicles (EV), EV charging, EV charging infrastructure, grid storage, or electric boat applications.

The proposed modular and scalable power conversion system is based on the latest generation of power semiconductor devices, silicon carbide (SiC), and can be used across many applications extending over wide power and voltage ranges. The project aims at making the system extremely compact and achieving extremely high efficiencies, which cannot be achieved by silicon-based systems.

This modular system configuration can easily be adopted to develop medium voltage-based EV charging application which will be the future for the EV commercial semi trucking industry. Furthermore, due to modularity and scalability, system integration becomes easy and less time-consuming decreasing the cost and helping the adaptation of electrification.

This SBIR Phase I project proposes to develop a multi-input, multi-output modular, scalable, and highly compact wide bandgap-based, four-port universal power conversion system which can be applied to electric propulsion and other power conversion applications. Variants of this system are suitable in electric vehicle charging, grid-connected energy storage, distributed energy, and electric boat propulsion.

The intellectual merits of the proposed research and development work is the highly compact and efficient nature with multiple power ports supported by a high frequency transformer switching at hundreds of kilohertz resulting in an anticipated size reduction of 50 times, and a weight reduction of at least 5 times compared to existing technologies.

The proposed highly integrated, four port system is based on the combination of next generation wide bandgap gallium nitride and silicon carbide devices. Three ports of the four port system will include, the battery port, propulsion motor port/AC grid connection port and 12V-48 volt auxiliary port, realized by using SiC based 3-level power electronics building block (PEBB).

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Awarding / Funding Agency
Place of Performance
Milwaukee, Wisconsin 53222-2022 United States
Geographic Scope
Single Zip Code
Related Opportunity
None
Midwest Electric Propulsion Company (Mepco) was awarded Project Grant 2153880 worth $255,920 from National Science Foundation in May 2023 with work to be completed primarily in Milwaukee Wisconsin United States. The grant has a duration of 1 year and was awarded through assistance program 47.084 NSF Technology, Innovation, and Partnerships.

SBIR Details

Research Type
SBIR Phase I
Title
SBIR Phase I:A compact, 3-level, high efficiency, 4-port, modular universal power conversion system with Internet of Things (IOT) using Wide Bandgap (WBG) devices
Abstract
The broader impact/commercial potential of this Small Business Innovation Research (SBIR) project focuses on developing a universal power conversion system that addresses the unmet needs of the fast-growing electrification and energy storage industries whether it is related to electric vehicles (EV), EV charging, EV charging infrastructure, grid storage, or electric boat applications. The proposed modular and scalable power conversion system is based on the latest generation of power semiconductor devices, silicon carbide (SiC), and can be used across many applications extending over wide power and voltage ranges. The project aims at making the system extremely compact and achieving extremely high efficiencies, which cannot be achieved by silicon-based systems. This modular system configuration can easily be adopted to develop medium voltage-based EV charging application which will be the future for the EV commercial semi trucking industry. Furthermore, due to modularity and scalability, system integration becomes easy and less time-consuming decreasing the cost and helping the adaptation of electrification._x000D__x000D_ This SBIR Phase I project proposes to develop a multi-input, multi-output modular, scalable, and highly compact wide bandgap-based, four-port universal power conversion system which can be applied to electric propulsion and other power conversion applications. Variants of this system are suitable in electric vehicle charging, grid-connected energy storage, distributed energy, and electric boat propulsion. The intellectual merits of the proposed research and development work is the highly compact and efficient nature with multiple power ports supported by a high frequency transformer switching at hundreds of kilohertz resulting in an anticipated size reduction of 50 times, and a weight reduction of at least 5 times compared to existing technologies. The proposed highly integrated, four port system is based on the combination of next generation wide bandgap gallium nitride and silicon carbide devices. Three ports of the four port system will include, the battery port, propulsion motor port/AC grid connection port and 12V-48 volt auxiliary port, realized by using SiC based 3-level power electronics building block (PEBB)._x000D_ _x000D_ This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Topic Code
EN
Solicitation Number
NSF 21-562

Status
(Complete)

Last Modified 5/19/23

Period of Performance
5/15/23
Start Date
4/30/24
End Date
100% Complete

Funding Split
$255.9K
Federal Obligation
$0.0
Non-Federal Obligation
$255.9K
Total Obligated
100.0% Federal Funding
0.0% Non-Federal Funding

Activity Timeline

Interactive chart of timeline of amendments to 2153880

Additional Detail

Award ID FAIN
2153880
SAI Number
None
Award ID URI
SAI EXEMPT
Awardee Classifications
Small Business
Awarding Office
491503 TRANSLATIONAL IMPACTS
Funding Office
491503 TRANSLATIONAL IMPACTS
Awardee UEI
RJ6CEAQZUL66
Awardee CAGE
8SGR8
Performance District
04
Senators
Tammy Baldwin
Ron Johnson
Representative
Gwen Moore

Budget Funding

Federal Account Budget Subfunction Object Class Total Percentage
Research and Related Activities, National Science Foundation (049-0100) General science and basic research Grants, subsidies, and contributions (41.0) $255,920 100%
Modified: 5/19/23