2151662
Cooperative Agreement
Overview
Grant Description
SBIR Phase II: Use of Ultraviolet Light as a Treatment for Pathogens in Strawberry Fields - The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase II project seeks to accelerate the transition from chemical pesticides to non-chemical alternatives by providing farmers with a sustainable, long-term solution for managing pests, while reducing agricultural impacts on human health and the environment.
Today, strawberry farmers are reliant on chemical pesticides, spending $2,500/acre on over 60,000 acres/year to support the $3.6 billion U.S. strawberry industry. Organic farms, representing 10% of the industry, lack effective treatment methods resulting in high labor costs and increased risk of yield loss.
This project seeks to develop a system for using ultraviolet light as an efficient and equally effective alternative for chemical pesticides, disrupting the pesticide manufacturing industry by providing farmers with a healthier and more environmentally conscious method for treating crops. The solution may eliminate uncertainty associated with chemical applications, reduce labor requirements, and increase profitability for farmers. Additionally, technologies developed as part of this project will minimize human exposure to chemical pesticides and reduce the ecological damage caused by existing agricultural treatment practices.
This Small Business Innovation Research (SBIR) Phase II project seeks to further develop a novel, non-chemical treatment system for commercialization of agricultural pest control. This system will provide a cost competitive alternative to chemical pesticides, a global $84 billion market. Existing pest controls are ineffective due to insect resistance, cause uncertainty, and result in reduced yield and profitability.
This project's objective is to create a reliable, non-chemical treatment alternative that uses ultraviolet (UV-C) light to control multiple pests effectively and sustainably. The project team will build a UV-C treatment device with a dosing control algorithm for achieving reliable pest control in minimum treatment time. This dosing controller will use novel volumetric irradiance profiles to characterize the effectiveness of a treatment and adjust treatment time and/or distance to account for field uncertainties.
The goal of this research is to be a commercial UV-C treatment system integrated into an automated pest control system. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Today, strawberry farmers are reliant on chemical pesticides, spending $2,500/acre on over 60,000 acres/year to support the $3.6 billion U.S. strawberry industry. Organic farms, representing 10% of the industry, lack effective treatment methods resulting in high labor costs and increased risk of yield loss.
This project seeks to develop a system for using ultraviolet light as an efficient and equally effective alternative for chemical pesticides, disrupting the pesticide manufacturing industry by providing farmers with a healthier and more environmentally conscious method for treating crops. The solution may eliminate uncertainty associated with chemical applications, reduce labor requirements, and increase profitability for farmers. Additionally, technologies developed as part of this project will minimize human exposure to chemical pesticides and reduce the ecological damage caused by existing agricultural treatment practices.
This Small Business Innovation Research (SBIR) Phase II project seeks to further develop a novel, non-chemical treatment system for commercialization of agricultural pest control. This system will provide a cost competitive alternative to chemical pesticides, a global $84 billion market. Existing pest controls are ineffective due to insect resistance, cause uncertainty, and result in reduced yield and profitability.
This project's objective is to create a reliable, non-chemical treatment alternative that uses ultraviolet (UV-C) light to control multiple pests effectively and sustainably. The project team will build a UV-C treatment device with a dosing control algorithm for achieving reliable pest control in minimum treatment time. This dosing controller will use novel volumetric irradiance profiles to characterize the effectiveness of a treatment and adjust treatment time and/or distance to account for field uncertainties.
The goal of this research is to be a commercial UV-C treatment system integrated into an automated pest control system. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Awardee
Funding Goals
THE GOAL OF THIS FUNDING OPPORTUNITY, "SMALL BUSINESS INNOVATION RESEARCH PROGRAM PHASE II", IS IDENTIFIED IN THE LINK: HTTPS://WWW.NSF.GOV/PUBLICATIONS/PUB_SUMM.JSP?ODS_KEY=NSF21565
Grant Program (CFDA)
Awarding / Funding Agency
Place of Performance
San Luis Obispo,
California
93401-3610
United States
Geographic Scope
Single Zip Code
Related Opportunity
21-565
Analysis Notes
Amendment Since initial award the End Date has been extended from 11/30/24 to 12/31/27 and the total obligations have increased 65% from $965,770 to $1,590,770.
Tric Robotics was awarded
Cooperative Agreement 2151662
worth $1,590,770
from National Science Foundation in December 2022 with work to be completed primarily in San Luis Obispo California United States.
The grant
has a duration of 5 years and
was awarded through assistance program 47.084 NSF Technology, Innovation, and Partnerships.
SBIR Details
Research Type
SBIR Phase II
Title
SBIR Phase II:Use of ultraviolet light as a treatment for pathogens in strawberry fields
Abstract
The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase II project seeks to accelerate the transition from chemical pesticides to non-chemical alternatives by providing farmers with a sustainable, long-term solution for managing pests, while reducing agricultural impacts on human health and the environment. Today, strawberry farmers are reliant on chemical pesticides, spending $2,500/acre on over 60,000 acres/year to support the $3.6 billion U.S. strawberry industry. Organic farms, representing 10% of the industry, lack effective treatment methods resulting in high labor costs and increased risk of yield loss. This project seeks to develop a system for using ultraviolet light as an efficient and equally effective alternative for chemical pesticides, disrupting the pesticide manufacturing industry by providing farmers with a healthier and more environmentally conscious method for treating crops. The solution may eliminate uncertainty associated with chemical applications, reduce labor requirements, and increase profitability for farmers. Additionally, technologies developed as part of this project will minimize human exposure to chemical pesticides and reduce the ecological damage caused by existing agricultural treatment practices._x000D_ _x000D_ _x000D_ This Small Business Innovation Research (SBIR) Phase II project seeks to further develop a novel, non-chemical treatment system for commercialization of agricultural pest control. This system will provide a cost competitive alternative to chemical pesticides, a global $84 billion market. Existing pest controls are ineffective due to insect resistance, cause uncertainty, and result in reduced yield and profitability. This project’s objective is to create a reliable, non-chemical treatment alternative that uses ultraviolet (UV-C) light to control multiple pests effectively and sustainably. The project team will build a UV-C treatment device with a dosing control algorithm for achieving reliable pest control in minimum treatment time. This dosing controller will use novel volumetric irradiance profiles to characterize the effectiveness of a treatment and adjust treatment time and/or distance to account for field uncertainties. The goal of this research is be a commercial UV-C treatment system integrated into an automated pest control system._x000D_ _x000D_ This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Topic Code
R
Solicitation Number
NSF 21-565
Status
(Ongoing)
Last Modified 8/12/25
Period of Performance
12/1/22
Start Date
12/31/27
End Date
Funding Split
$1.6M
Federal Obligation
$0.0
Non-Federal Obligation
$1.6M
Total Obligated
Activity Timeline
Transaction History
Modifications to 2151662
Additional Detail
Award ID FAIN
2151662
SAI Number
None
Award ID URI
SAI EXEMPT
Awardee Classifications
Small Business
Awarding Office
491503 TRANSLATIONAL IMPACTS
Funding Office
491503 TRANSLATIONAL IMPACTS
Awardee UEI
Z22RPLCWVDK9
Awardee CAGE
862R8
Performance District
CA-24
Senators
Dianne Feinstein
Alejandro Padilla
Alejandro Padilla
Budget Funding
Federal Account | Budget Subfunction | Object Class | Total | Percentage |
---|---|---|---|---|
Research and Related Activities, National Science Foundation (049-0100) | General science and basic research | Grants, subsidies, and contributions (41.0) | $1,090,770 | 100% |
Modified: 8/12/25