Search Prime Grants

2126731

Project Grant

Overview

Grant Description
Sbir Phase I: Leveraging machine learning to enable generalized phage therapy for pulmonary infections.
Place of Performance
South San Francisco, California 94080-1913 United States
Geographic Scope
Single Zip Code
Related Opportunity
None
Felix Biotechnology was awarded Project Grant 2126731 worth $256,000 from Directorate for Technology, Innovation and Partnerships in September 2021 with work to be completed primarily in South San Francisco California United States. The grant has a duration of 1 year and was awarded through assistance program 47.084 NSF Technology, Innovation, and Partnerships.

SBIR Details

Research Type
SBIR Phase I
Title
SBIR Phase I: Leveraging machine learning to enable generalized phage therapy for pulmonary infections
Abstract
The broader impact /commercial potential of this Small Business Innovation Research (SBIR) Phase I project is to develop a new therapy for bacterial infections, especially those resistant to current antibiotics, which have generated antibiotic-resistant “super-bug” bacterial infections that cannot be treated easily. Bacteriophages (‘phages’) are viruses that only infect specific bacteria and cannot infect humans. Phages kill harmful bacteria, but they currently do not work well as general solutions that can be prescribed broadly because each phage only kills a subset of bacteria; therefore a unique phage may be required for different people with the same infection. This project develops new technology to understand how phages target bacteria. It uses machine learning to determine the parts of each phage responsible for killing specific bacteria, in order to make phages for broad use in treating infections. This innovation is a key competitive advantage, and helps both national health and defense by creating new treatments for antibiotic-resistant infections, which cost >$64 billion annually and may become the next major pandemic. This Small Business Innovation Research (SBIR) Phase I project will develop machine learning algorithms that identify genetic determinants of host range in phages in order to engineer phage to have expanded host range. The widespread evolution of multidrug-resistant infections is a major threat to global health, and traditional antibiotics have significant adverse effects on patients and their microbiomes. Phages can solve this global health challenge, but the inability to expand and tune phage host-range to create a generalizable therapeutic remains a key barrier to commercial success. This project will leverage machine learning and proprietary high throughput phage characterization methods to generate maps of phage-host interactions to identify genes that determine phage host range, and use novel engineering techniques to validate these genetic determinants of host range. The expected outputs are twofold: 1) a machine learning model for predicting variants, genes, or genomic regions that determine phage host range and 2) an engineered phage with expanded host range. This work will further scientific understanding of phage biology and phage-host interactions, while also providing a platform to develop phages with tunable host range for therapeutic, agricultural, and environmental applications. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Topic Code
PT
Solicitation Number
None

Status
(Complete)

Last Modified 5/4/22

Period of Performance
9/1/21
Start Date
8/31/22
End Date
100% Complete

Funding Split
$256.0K
Federal Obligation
$0.0
Non-Federal Obligation
$256.0K
Total Obligated
100.0% Federal Funding
0.0% Non-Federal Funding

Activity Timeline

Interactive chart of timeline of amendments to 2126731

Transaction History

Modifications to 2126731

Additional Detail

Award ID FAIN
2126731
SAI Number
None
Award ID URI
SAI EXEMPT
Awardee Classifications
Small Business
Awarding Office
491503 TRANSLATIONAL IMPACTS
Funding Office
490707 DIVISION OF INDUSTRIAL INNOVATION
Awardee UEI
Y3JNYYQ5YHA6
Awardee CAGE
8JL70
Performance District
14
Senators
Dianne Feinstein
Alejandro Padilla
Representative
Eric Swalwell
Modified: 5/4/22