Search Contract Opportunities

Uncertainty Management for Space Domain Awareness of Non-Standard Threats

ID: SF242-D022 • Type: SBIR / STTR Topic • Match:  90%
Opportunity Assistant

Hello! Please let me know your questions about this opportunity. I will answer based on the available opportunity documents.

Please sign-in to link federal registration and award history to assistant. Sign in to upload a capability statement or catalogue for your company

Some suggestions:
Please summarize the work to be completed under this opportunity
Do the documents mention an incumbent contractor?
Does this contract have any security clearance requirements?
I'd like to anonymously submit a question to the procurement officer(s)
Loading

Description

OUSD (R&E) CRITICAL TECHNOLOGY AREA(S): Space Technology The technology within this topic is restricted under the International Traffic in Arms Regulation (ITAR), 22 CFR Parts 120-130, which controls the export and import of defense-related material and services, including export of sensitive technical data, or the Export Administration Regulation (EAR), 15 CFR Parts 730-774, which controls dual use items. Offerors must disclose any proposed use of foreign nationals (FNs), their country(ies) of origin, the type of visa or work permit possessed, and the statement of work (SOW) tasks intended for accomplishment by the FN(s) in accordance with the Announcement. Offerors are advised foreign nationals proposed to perform on this topic may be restricted due to the technical data under US Export Control Laws. OBJECTIVE: The objective of this topic is to develop algorithms and methodology to allow for better uncertainty propagation of beyond-GEO trajectories, which are subjected to more highly nonlinear dynamics, stochastic excitation, and uncertain initial conditions than typical GEO-and-below trajectories. DESCRIPTION: One of the significant technical challenges in space domain awareness is the accurate and consistent propagation of uncertainty for objects governed by highly nonlinear dynamics with stochastic excitation and uncertain initial conditions. This challenge is even greater in the beyond-GEO region where three-body gravity becomes significant, resulting in the dynamics being more nonlinear. Additionally, the increased distance between an Earth-based sensor and the object reduces the apparent motion between them, resulting in little independent information to initialize an orbit. The initial uncertainties in xGEO orbits are therefore highly non-Gaussian, which inhibits the effectiveness of traditional propagation and filtering methods. Orbits within this area of regard enable low-cost options for spacecraft to rapidly alter course and threaten terrestrial and space-based assets. Being able to accurately understand and propagate the uncertainty of objects within this area is necessary to assess whether they pose a threat. PHASE I: As this is a Direct-to-Phase-II (D2P2) topic, no Phase I awards will be made as a result of this topic. To qualify for this D2P2 topic, the Government expects the applicant(s) to demonstrate feasibility by means of a prior Phase I-type effort that does not constitute work undertaken as part of a prior or ongoing SBIR/STTR funding agreement. Applicant(s) must have developed a concept for a workable prototype or design to address at a minimum the basic capabilities of the stated objective. Proposal must show, as appropriate to the proposed effort, a demonstrated technical feasibility to meet the capabilities of the stated objective. The documentation provided must substantiate that the proposer's technology is currently at an acceptable stage to be funded at the D2P2 level. Documentation may include reports demonstrating prior work demonstrating feasibility, results of prior efforts, success criteria of a prototype, or any other relevant documentation as applicable. GFE will not be provided. PHASE II: Awardee(s) will develop algorithms and methodology to characterize uncertainty propagation, including contribution of higher-order moments, of xGEO trajectories. Awardee(s) will identify uncertainty propagation behavior in presence of variety of mission profiles, including low-thrust, long-duration maneuvers, quasi-periodic trajectories, and Lyapunov and transfer orbits. Awardee(s) will evaluate uncertainty propagation across sensor exclusion and occultation geometries and assess impact of maneuvers in this space. Awardee(s) will identify sensor network placement and tasking strategies to maximize information gain of xGEO objects and satisfy object custody requirements. Identify and develop estimation techniques applicable to the identified uncertainty distributions. Awardee(s) will evaluate the resultant uncertainty from initial orbit determination as well as catalog maintenance (filtering) algorithms. GFE will not be provided. PHASE III DUAL USE APPLICATIONS: Develop a strategy to transition prototype residual capabilities and incremental proliferation based on operational USSF requirements. REFERENCES: T. Wolf, E.M. Zucchelli and B. A. Jones, "Multi-Fidelity Uncertainty Propagation for Objects in Cislunar Space," AIAA 2022-1774. AIAA SCITECH 2022 Forum. January 2022; C. Freuh, K. Howell, K.J. DeMars, S. Bhadauria, and M. Gupta, "Cislunar Space Traffic Management: Surveillance Through Earth-Moon Resonance Orbits," 8th European Conference on Space Debris, ESA Space Debris Office, Darmstadt, Germany, Apr. 2021; M.R. Thompson, N.P. Re, C. Meek, and B. Cheetham, "Cislunar Orbit Determination and Tracking via Simulated Space-Based Measurements," Advanced Maui Optical and Space Surveillance Conference, Maui, HI, Sept. 2021; KEYWORDS: beyond-GEO, xGEO, cislunar, space traffic management, space domain awareness, uncertainty propagation, orbit determination, space sensor tasking

Overview

Response Deadline
June 12, 2024 Past Due
Posted
April 17, 2024
Open
May 15, 2024
Set Aside
Small Business (SBA)
Place of Performance
Not Provided
Source
Alt Source

Program
SBIR Phase I / II
Structure
Contract
Phase Detail
Phase I: Establish the technical merit, feasibility, and commercial potential of the proposed R/R&D efforts and determine the quality of performance of the small business awardee organization.
Phase II: Continue the R/R&D efforts initiated in Phase I. Funding is based on the results achieved in Phase I and the scientific and technical merit and commercial potential of the project proposed in Phase II. Typically, only Phase I awardees are eligible for a Phase II award
Duration
6 Months - 1 Year
Size Limit
500 Employees
On 4/17/24 Department of the Air Force issued SBIR / STTR Topic SF242-D022 for Uncertainty Management for Space Domain Awareness of Non-Standard Threats due 6/12/24.

Documents

Posted documents for SBIR / STTR Topic SF242-D022

Question & Answer

The AI Q&A Assistant has moved to the bottom right of the page

Contract Awards

Prime contracts awarded through SBIR / STTR Topic SF242-D022

Incumbent or Similar Awards

Potential Bidders and Partners

Awardees that have won contracts similar to SBIR / STTR Topic SF242-D022

Similar Active Opportunities

Open contract opportunities similar to SBIR / STTR Topic SF242-D022