Search Contract Opportunities

Technologies for Detecting Tumor-Derived Cell Clusters

ID: NIH/NCI 457 • Type: SBIR / STTR Topic • Match:  95%
Opportunity Assistant

Hello! Please let me know your questions about this opportunity. I will answer based on the available opportunity documents.

Please sign-in to link federal registration and award history to assistant. Sign in to upload a capability statement or catalogue for your company

Some suggestions:
Please summarize the work to be completed under this opportunity
Do the documents mention an incumbent contractor?
I'd like to anonymously submit a question to the procurement officer(s)
Loading

Description

Fast-Track proposals will be accepted. Direct-to-Phase II proposals will NOT be accepted. Number of anticipated awards: 3-5 Budget (total costs, per award): Phase I: up to $400,000 for up to 12 months Phase II: up to $2,000,000 for up to 2 years PROPOSALS THAT EXCEED THE BUDGET OR PROJECT DURATION LISTED ABOVE MAY NOT BE FUNDED. Summary Technologies that can assess metastatic risk early and facilitate prompt interventions can significantly improve cancer outcomes because most cancer deaths are due to metastasis. Currently, very few markers are available for predicting metastatic risk. Disseminated tumor cells that enter circulation are pivotal in the metastatic cascade, and circulating tumor cells (CTCs) are being used as putative markers for monitoring tumor dynamics and treatment response. However, accumulating evidence suggests that tumor-derived cell clusters (TDCCs) may be a more important factor in metastasis and associated poor progression-free survival and overall survival. Clustering is an adaptive mechanism that enhances CTC survival and migration in the harsh conditions of the bloodstream, confers stemness, immune evasiveness, and increases their metastatic potential. TDCCs are reported to consist of either homotypic clusters composed of only cancer cells; or heterotypic clusters made of stromal cells or immune cells including fibroblasts (CAFs), macrophage-like cells (CAMLs), endothelial cells (TECs), tumor-macrophage hybrid cells (TMHCs), and neutrophils, along with tumor cells. Compared to single CTCs, TDCCs have been shown to have distinct molecular features, exhibit a higher proliferation rate, and 20 to 230-fold more metastatic potential than individual CTCs. Overall, these data suggest that composition and heterogeneity of TDCCs may be more informative for assessing metastatic risk or for predicting and following treatment response than assays based on single CTCs. The biology of formation, dissemination, and metastatic mechanisms associated with TDCCs are poorly understood because currently, very few technologies exist to study TDCCs. Studies that detect TDCCs or elucidate their biology merely adapt existing CTC-based technologies that are grossly inadequate for heterotypic clusters. There is an unmet need for technologies that combine cluster enrichment, enumeration, and downstream molecular analysis to better understand biology and the role of different cells in metastasis

Overview

Response Deadline
Nov. 14, 2023 Past Due
Posted
Aug. 25, 2023
Open
Aug. 25, 2023
Set Aside
Small Business (SBA)
Place of Performance
Not Provided
Source
Alt Source

Program
SBIR Phase I / II
Structure
Contract or Grant
Phase Detail
Phase I: Establish the technical merit, feasibility, and commercial potential of the proposed R/R&D efforts and determine the quality of performance of the small business awardee organization.
Phase II: Continue the R/R&D efforts initiated in Phase I. Funding is based on the results achieved in Phase I and the scientific and technical merit and commercial potential of the project proposed in Phase II. Typically, only Phase I awardees are eligible for a Phase II award
Duration
6 Months - 1 Year
Size Limit
500 Employees
On 8/25/23 National Institutes of Health issued SBIR / STTR Topic NIH/NCI 457 for Technologies for Detecting Tumor-Derived Cell Clusters due 11/14/23.

Documents

Posted documents for SBIR / STTR Topic NIH/NCI 457

Question & Answer

The AI Q&A Assistant has moved to the bottom right of the page

Contract Awards

Prime contracts awarded through SBIR / STTR Topic NIH/NCI 457

Incumbent or Similar Awards

Potential Bidders and Partners

Awardees that have won contracts similar to SBIR / STTR Topic NIH/NCI 457

Similar Active Opportunities

Open contract opportunities similar to SBIR / STTR Topic NIH/NCI 457