Search Contract Opportunities

DIGITAL ENGINEERING- Model Centric Safety Analysis Tool

ID: N231-030 • Type: SBIR / STTR Topic • Match:  85%
Opportunity Assistant

Hello! Please let me know your questions about this opportunity. I will answer based on the available opportunity documents.

Please sign-in to link federal registration and award history to assistant. Sign in to upload a capability statement or catalogue for your company

Some suggestions:
Please summarize the work to be completed under this opportunity
Do the documents mention an incumbent contractor?
Does this contract have any security clearance requirements?
I'd like to anonymously submit a question to the procurement officer(s)
Loading

Description

OUSD (R&E) CRITICAL TECHNOLOGY AREA(S): Trusted AI and Autonomy The technology within this topic is restricted under the International Traffic in Arms Regulation (ITAR), 22 CFR Parts 120-130, which controls the export and import of defense-related material and services, including export of sensitive technical data, or the Export Administration Regulation (EAR), 15 CFR Parts 730-774, which controls dual use items. Offerors must disclose any proposed use of foreign nationals (FNs), their country(ies) of origin, the type of visa or work permit possessed, and the statement of work (SOW) tasks intended for accomplishment by the FN(s) in accordance with the Announcement. Offerors are advised foreign nationals proposed to perform on this topic may be restricted due to the technical data under US Export Control Laws. OBJECTIVE: Apply Model Based System Engineering (MBSE) tools to create a model representing the safety process required to develop and deploy advanced Navy munition systems. DESCRIPTION: Munitions (Missiles and Projectiles) require rigorous technical evaluation and assessment of safety-critical components and sub-components, including software. This currently involves the evaluation of the testing, evaluation, and verification of a munition's safety-critical features by System Safety Working Groups (SSWGs) and official Navy Safety Technical Panels. These include the Fuze and Initiation Safety Technical Panel (FISTRP); the Software System Safety Technical Review Panel (SSSTRP), and ultimately the Navy's Weapon System Explosive Safety Review Board (WSESRB). The WSESRB reviews the entire program's plan to address safety-critical issues for the munitions to mitigate the risk or criticality of hazardous events. Many component-related artifacts such as architectural drawings are developed for SSWGs and Technical Panels and are reused throughout this process. Due to the heterogeneous nature of munitions and explosives, their manufacture, storage, delivery application, and operational use, coupled with safety requirements spanning current and future designs, there is a necessity to automate the processes that qualify their fielding. Currently processes are performed manually with no automated solution. Because automated solutions do not currently exist, the US Navy seeks advances in data and architecture design to develop a MBSE framework with structured data schemas for advanced munition safety analysis and management. In addition to integrating requirements (e.g., Department of Defense [DoD] explosive safety guidelines) and data generation (e.g., test configurations, test metrics, test results) through such techniques as Native Programming Language (NPL), a model [based upon a subset of Department of Defense Architectural Framework (DoDAF) like views] is expected that will enable multiple tiers of decision analysis. These tiers may include not only safety integration but impacts on munition performance and life cycle costs. The solution will provide a structure for integrating requirements and data of differing ontologies from multiple sources (e.g., DoD, Department of the Navy (DoN), Department of Transportation (DoT)) as well as their architecture to model the complex processes, requirements, and test data for safety qualification of different munition configurations. The resultant technology should provide a recognizable model comprising elements of the Data Models, Operational Level Models, and System Level Models necessary to support safety data and risk and hazard analysis. The final product should provide a prototype digital model of the DoN safety framework that bridges relationships between explosive hazard classifications, explosive hazard mitigation and associated risks with requirements and testing processes. The final product shall also illustrate the decision analysis techniques that provide efficiencies. It is expected that a subset of existing munition program cases will be used to trace the conceptualized system performance across both operational and system safety level analysis events to support model validity and potential process efficiencies that could reduce development time and costs. Additionally, MBSE based tools that specifically support different analysis areas are expected (that is, support differing metrics or multi-tier analysis capability). An example of the analysis metrics would be in support of artifacts extracted from the FISTRP, SSSTRP, WSESRB, and Insensitive Munitions (IM) requirements and processes. Multi-tier analysis would look for bridging this safety perspective model with other munition/missile system engineering or design tools. PHASE I: Define the conceptual data model and architecture framework for modeling munition and missile safety development, test, and qualification process and analysis allowing for technology innovation. Demonstrate the process model concept meets the parameters in the Description and show feasibility through modeling and analysis. This period will include a static demonstration of use case applicability to illustrate the modeling of the processes to lay the groundwork for supporting program analysis. The Phase I Option, if exercised, will include the initial design specifications and capabilities description to build a prototype solution in Phase II. PHASE II: Develop and deliver a prototype active framework using the concept developed in Phase I. Demonstrate the prototype meets the parameters of the Description using a model centric approach. This prototype will result in a demonstration of multiple uses cases and perturbations that will emphasize tiered analysis in support of decision events. PHASE III DUAL USE APPLICATIONS: Provide the final product and remain positioned to expand the use cases as well as safety and fault tree based analysis capabilities. The development of the model is available to expand upon multi-tier decision support tools and to more closely couple design, manufacturing, and program management decision events with discrete and stochastic based risk analysis. Commercial applications would include safety critical industry processes, especially those operating under multiple requirement sources (e.g., Environmental directives - both Federal and local). Examples of possible industries might include Nuclear, Geophysical (Mining), or Chemical. REFERENCES: 1. Future Model-Based Systems Engineering Vision and Strategy Bridge for NASA National Aeronautics and Space Administration Glenn Research Center Cleveland, Ohio 44135 October 2021. https://ntrs.nasa.gov/citations/20210014025 2. Department of Defense: Digital Engineering Strategy. Office of the Deputy Assistant Secretary of Defense for Systems Engineering, 2018. https://man.fas.org/eprint/digeng-2018.pdf 3. Biggs, Geoffrey et al. Integrating Safety and Reliability Analysis into MBSE: overview of the new proposed OMG standard, INCOSE International Symposium, 16 August 2018. https://doi.org/10.1002/j.2334-5837.2018.00551.x KEYWORDS: Model Based System Engineering; MBSE; DoD Architectural Framework; Digital Engineering for safety framework; Insensitive Munitions; Weapon System Explosive Review Board; STANDARD Missile program

Overview

Response Deadline
March 8, 2023 Past Due
Posted
Jan. 11, 2023
Open
Feb. 8, 2023
Set Aside
Small Business (SBA)
Place of Performance
Not Provided
Source
Alt Source

Program
SBIR Phase I / II
Structure
Contract
Phase Detail
Phase I: Establish the technical merit, feasibility, and commercial potential of the proposed R/R&D efforts and determine the quality of performance of the small business awardee organization.
Phase II: Continue the R/R&D efforts initiated in Phase I. Funding is based on the results achieved in Phase I and the scientific and technical merit and commercial potential of the project proposed in Phase II. Typically, only Phase I awardees are eligible for a Phase II award
Duration
6 Months - 1 Year
Size Limit
500 Employees
On 1/11/23 Department of the Navy issued SBIR / STTR Topic N231-030 for DIGITAL ENGINEERING- Model Centric Safety Analysis Tool due 3/8/23.

Documents

Posted documents for SBIR / STTR Topic N231-030

Question & Answer

The AI Q&A Assistant has moved to the bottom right of the page

Contract Awards

Prime contracts awarded through SBIR / STTR Topic N231-030

Incumbent or Similar Awards

Potential Bidders and Partners

Awardees that have won contracts similar to SBIR / STTR Topic N231-030

Similar Active Opportunities

Open contract opportunities similar to SBIR / STTR Topic N231-030